
PeerAuth Extension Security & Privacy
Analysis (v0.2.5)
This document analyzes the PeerAuth browser extension for generating proofs of bank
transactions.

Note: PeerAuth is closed source - this analysis was performed on compiled/minified
JavaScript bundles (extension/), not source code. Some implementation details may be
incomplete or inferred from observed behavior.

Table of Contents

1. Executive Summary
2. Motivation
3. How It Works
4. What is the "Proof"?
5. Privacy Concerns
6. Security Concerns
7. Supported Providers
8. Technical Details
9. Author's Perspective

10. Recommendations

Executive Summary

PeerAuth v0.2.5 is a browser extension that generates cryptographic proofs of bank
transactions using the Reclaim Protocol. It supports 18+ payment providers and allows users to
prove they made a payment without revealing all transaction details.

Critical Privacy/Security Findings:

Finding Severity

Attestor sees ALL your bank data (balance, transactions, personal info) CRITICAL

Selective disclosure is trust-based, not cryptographic CRITICAL

PostHog analytics tracks wallet addresses and proof activity HIGH

Extension has access to ALL websites (https://*/*) HIGH

Content script injected on every HTTPS page HIGH

Single centralized attestor (no self-hosting option) MEDIUM

Motivation

I'm writing this report out of , not to complain. I've been waiting for a product like this for a
long time.

What zkp2p enables is genuinely exciting. It allows instant on-ramp and off-ramp between
fiat and crypto. Here's how it works: a buyer wants USDC, so they send money to a seller via
Revolut, Venmo, or any supported payment service. The PeerAuth extension attests that the
payment happened, and the USDC is released instantly. No waiting, minimal disputes, reduced
friction. The seller just configures their bank "address," deposits USDC, and waits - they don't
even need the extension.

This brings cryptoanarchy tools closer to the present. The product experience has been great,
and overall - good job to the team.

The possibilities are even more exciting. Imagine a "Pay with Revolut" button for merchants
to onboard users who aren't yet in the crypto ecosystem. You could buy anonymous services,
cashu tokens, or anything else by paying with Revolut - the merchant receives stablecoins
(hopefully privacy-preserving ones in the future) and never has to touch bank fiat directly.

Why write this report then? Because I want this to succeed. The goal is to:

Improve the ecosystem by highlighting what could be better
Give users clarity about how the service they're using actually works
Hope for a better, more private, more trustless version

The technical critiques in this report come from a place of wanting to see this technology reach
its full potential - true zero-knowledge, fully open source, and verifiable.

How It Works

Proof Generation Flow

┌─────────────────────┐ ┌────────────────────────────────────┐
│ Your Browser │ │ Attestor (zkp2p.xyz) │
│ │ │ │
│ 1. You log into │ │ │
│ your bank │ │ │
│ │ │ │
│ 2. Extension │ │ │
│ captures TLS │─────────────▶│ 3. Decrypts using temp keys │
│ session: │ │ ATTESTOR SEES EVERYTHING: │
│ - Encrypted │ │ ├─ Your balance: $5,420 │
│ traffic │ │ ├─ Transaction: $100 to @john │
│ - Temp TLS keys │ │ ├─ Your name, address │
│ - Redaction │ │ └─ All API response fields │
│ config │ │ │
│ │ │ 4. Applies redaction config │
│ │ │ (TRUST-BASED filtering) │
│ │◀─────────────│ │
│ 5. Receive signed │ │ 5. Signs proof containing only: │
│ proof │ │ ├─ Amount: $100 │
│ │ │ └─ Recipient: @john │
└─────────────────────┘ └────────────────────────────────────┘

The Reclaim Protocol

PeerAuth uses Reclaim Protocol's "key-upgrade mechanism":

1. Capture: Extension intercepts TLS session between you and your bank
2. Send: Extension sends encrypted traffic + temporary session keys to attestor
3. Decrypt: Attestor decrypts and sees your complete bank API response
4. Filter: Attestor applies redaction config (removes balance, personal info, etc.)
5. Sign: Attestor signs proof containing only whitelisted fields
6. Return: You receive signed proof to share with third parties

What Gets Revealed in Proofs

For a typical transfer proof:

Field In Proof?

Transaction amount Yes

Currency Yes

Recipient username Yes

Transaction date Yes

Transaction ID Yes

Transaction state Yes

Your balance No (redacted)

Your name No (redacted)

Your address No (redacted)

Other transactions No (redacted)

What is the "Proof"?

Unlike traditional zero-knowledge proofs, the "proof" generated by PeerAuth is not a
cryptographic proof you generate locally. It is a signed attestation from zkp2p.xyz's
server.

Proof is Generated by the Attestor, Not Locally

┌─────────────────────┐ ┌─────────────────────────────────┐
│ Extension │ │ Attestor (zkp2p.xyz) │
│ │ │ │
│ You do NOT │ Send: traffic, │ │
│ generate the │ temp keys, │ Attestor GENERATES │
│ proof locally │ redaction config │ the proof: │
│ │───────────────────▶│ 1. Decrypts your data │
│ │ │ 2. Applies redaction │
│ │ │ 3. SIGNS the result │
│ │◀───────────────────│ │
│ Receive signed │ Return: signed │ │
│ attestation │ attestation │ │
└─────────────────────┘ └─────────────────────────────────┘

What the "Proof" Contains

The proof is essentially a signed document from zkp2p.xyz stating "we saw this data":

Component Description

Revealed fields Transaction amount, recipient, date, etc.

Attestor signature zkp2p.xyz's cryptographic signature

Attestor identifier Public key or ID of the signing attestor

Timestamp When the attestation was created

What it is NOT:

Not a zero-knowledge proof (attestor saw everything)
Not generated locally (attestor generates and signs it)
Not independently verifiable (you must trust the attestor)

Proof Storage and Export

The extension stores proofs locally and exposes APIs to retrieve them:

window.zktls = {
 fetchProofs(), // Get all stored proofs
 fetchProofById(id), // Get specific proof
 generateProof(...), // Request new proof generation
}

Proofs can be downloaded/exported, but they are fundamentally attestor signatures, not
independent cryptographic proofs.

How Verification Works

This is the critical difference from true ZK proofs:

Aspect True ZK Proof PeerAuth "Proof"

What you verify Mathematical correctness Attestor's signature

Trust required None (math is trustless) Must trust zkp2p.xyz

Who can forge? No one (cryptographically impossible) zkp2p.xyz can forge any proof

Analogy Mathematical theorem Notarized document

To verify a PeerAuth proof, you are asking:

"Did zkp2p.xyz sign this document?"

You are NOT asking:

"Is this mathematically proven to be true?"

Trust Implications for Third Parties

If you receive a PeerAuth proof from someone:

1. You must trust zkp2p.xyz - They could have signed a false attestation
2. You must trust zkp2p.xyz wasn't compromised - An attacker with their keys can forge

proofs
3. You cannot independently verify - Unlike ZK proofs, you can't check the math yourself
4. zkp2p.xyz is a single point of trust - No alternative attestors available

This is fundamentally different from TLSNotary (original extension) where the proof is
cryptographically verifiable by anyone without trusting a third party.

Privacy Concerns

1. Attestor Sees ALL Your Data - CRITICAL

The attestor at wss://attestor.zkp2p.xyz/ws sees your complete decrypted bank API
responses.

This includes:

Your account balance
All transaction details

Your name, address, personal information
Any data in the API response

Redaction is NOT cryptographic - it relies on the attestor following configuration instructions
honestly.

What you must trust zkp2p.xyz to do:

1. Not log or store your full bank API responses
2. Actually apply the redaction config honestly
3. Not extract session data for replay attacks
4. Not correlate your proofs with your identity
5. Secure their infrastructure against breaches

2. Attestor Can Log Everything - CRITICAL

Since the attestor decrypts and processes your complete bank data, there is nothing
preventing them from logging it.

What the attestor can log: | Data | Risk | |------|------| | Complete bank API responses | Your
balance, all transactions, personal details | | Your IP address | Geographic location, ISP
identification | | Timing of requests | Usage patterns, when you use banking | | Wallet address
(from analytics) | Link to your crypto identity |

No way to verify they don't log:

Attestor server is closed-source - you cannot audit it
No published privacy policy specific to attestor data handling
No transparency reports about data retention
No third-party audits of their infrastructure
Pure "trust us" model

What logged data enables: | Threat | Description | |--------|-------------| | Deanonymization | Link
your crypto wallet address to your real bank identity | | Financial surveillance | Track your
spending, income, transaction patterns | | Data breach exposure | If zkp2p.xyz is breached,
your bank data could leak | | Regulatory/legal access | Law enforcement could compel
disclosure of logs | | Insider threat | Malicious employee could access your data |

Critical comparison:

Aspect TLSNotary (Original) Reclaim (PeerAuth)

Can notary/attestor log your
data?

NO - never has plaintext YES - sees everything

Logging prevention
Cryptographic (MPC-
TLS)

Trust-based (policy only)

Breach impact
Minimal (no sensitive
data)

Catastrophic (full bank
data)

Bottom line: Every time you generate a proof, you are sending your complete bank account
data to zkp2p.xyz's servers and trusting they will delete it immediately. There is no technical
mechanism preventing them from keeping a complete copy.

3. PostHog Analytics - HIGH

The extension sends telemetry to https://us.i.posthog.com :

Event Data Sent

user_identified User ID, wallet address

extension_proof_generation Proof ID, duration, status, provider

app_error_captured Error details with stack traces

extension_memory_event Memory usage metrics

screen_view Route/page tracking

app_launched/foregrounded/backgrounded Usage patterns

No apparent opt-out mechanism found.

This data could be used to:

Link users across sessions
Correlate proof attempts with wallet addresses
Build user behavior profiles

4. Selective Disclosure is Trust-Based

The extension uses configuration fields to control what appears in proofs:

Config Field What It Means
Attestor Sees

Original?

secretHeaders
"Don't include these headers in
proof"

YES

responseRedactions "Don't include these JSON fields" YES

proofMetadataSelectors "Only include these fields in proof" YES

These are instructions to the attestor, not cryptographic enforcement. The attestor sees
everything and is trusted to filter correctly.

Security Concerns

1. Overly Broad Permissions - HIGH

"host_permissions": [
 "https://*/*",
 "http://localhost:3000/*"
]

The extension can access ANY HTTPS website. This is far broader than necessary for
supporting specific bank providers.

2. Global Content Script Injection - HIGH

The extension's content script is injected on every HTTPS page you visit:

"content_scripts": [{
 "matches": ["https://*/*", "http://localhost:3000/*"],
 "js": ["contentScript.bundle.js"]
}]

3. Global API Exposure - HIGH

The extension exposes window.zktls on ALL websites:

window.zktls = {
 requestConnection(),
 generateProof(...),
 fetchProofById(...),
 fetchProofs(),
 onMetadataMessage()
}

Any website can call these methods. While user approval is required via sidebar UI, this creates
social engineering attack vectors.

4. Single Centralized Attestor - MEDIUM

All proofs go through a single attestor:

wss://attestor.zkp2p.xyz/ws

Concerns:

Single point of failure
No geographic redundancy
Cannot self-host
Must trust zkp2p.xyz infrastructure entirely

Supported Providers

PeerAuth supports 18+ payment providers:

1. Alipay (transfer + register)
2. Bank of America (Zelle)
3. CashApp
4. Chase (Zelle)
5. Chime
6. Citi (Zelle)
7. IDFC Bank
8. Luxon
9. Mercado Pago

10. Monzo

11. N26
12. PayPal
13. Revolut
14. Royal Bank Canada (Interac)
15. US Bank (Zelle)
16. Venmo
17. Wise
18. Mercury (wires)

Provider configurations are fetched dynamically from:

https://raw.githubusercontent.com/zkp2p/providers/refs/heads/releases/prod/

Technical Details

Extension Structure

extension/
├── manifest.json
├── background.bundle.js (322 KB)
├── offscreen.bundle.js (5.2 MB)
├── sidePanel.bundle.js (659 KB)
├── contentScript.bundle.js (18 KB)
├── injectScript.bundle.js
└── browser-rpc/resources/
 └── (SNARKJS circuits: AES-256-CTR, AES-128-CTR, ChaCha20)

Key URLs

Purpose URL

Attestor wss://attestor.zkp2p.xyz/ws

Analytics https://us.i.posthog.com

Provider
Config

https://raw.githubusercontent.com/zkp2p/providers/refs/heads/releases/prod/

Support https://support.zkp2p.xyz

Developer
Docs

https://developer.zkp2p.xyz

ZK Circuits

The extension includes SNARKJS circuits for symmetric cryptography:

AES-256-CTR
AES-128-CTR
ChaCha20

These could theoretically enable client-side ZK proofs that hide data from the attestor, but they
do not appear to be used for this purpose currently.

Author's Perspective

The following are my personal concerns and suggestions for improving PeerAuth:

1. This is NOT Zero Knowledge

The name "zkp2p" is misleading. What actually happens:

You temporarily leak a TLS session key to a third party (the attestor)
The attestor decrypts your data, sees everything, and signs an attestation
You trust them not to log it

This is attestation, not zero-knowledge proof. True ZK would mean the attestor learns nothing
beyond the validity of the statement.

2. Telemetry Must Be Opt-In

Currently, PostHog analytics is:

Not opt-in (active by default)
Not even opt-out (no apparent mechanism to disable)

Telemetry that tracks wallet addresses and proof activity should require explicit user consent.

3. Extension Must Be Free and Open Source

I will not run a closed-source extension that:

Has access to all my websites
Processes my bank account data
Cannot be audited

The extension needs to be:

Fully open source
Auditable by security researchers
Reproducibly buildable

4. Prover Design Leaks Too Much to Attestor

The current design sends your complete bank data to the attestor. A better approach:

Wrap TLSNotary proof in a ZK proof:

1. Generate TLSNotary proof locally (attestor never sees plaintext)
2. Create ZK circuit that:

Verifies TLS certificate signatures up to root CA
Verifies regexp matching for public parameters
Outputs only: recipient, amount, date, status

3. Everything else remains private - attestor never sees it

This is now technically feasible. See @oskarth's talk on this exact topic.

5. Global Page Injection is Actually Useful

While the security analysis flags https://*/* permissions as a concern, I believe this is
actually valuable:

Enables on/off-ramp services to integrate anywhere

Any website could verify payment proofs
Creates an open ecosystem for P2P payments

The issue isn't the broad permissions - it's the other concerns (closed source, attestor trust,
analytics).

6. Attestation Server Must Be Verifiable

If the attestor must see data (current design), it should be verifiable:

Ideal setup:

Open source the attestor code
Run reproducible build in a TEE (Trusted Execution Environment)
Provide TEE attestation proving the code running matches the source
End-to-end encryption into the TEE
This would be a sufficient proof that logging is impossible

This would transform "trust us" into "verify the code and TEE attestation."

Recommendations

For Users

1. Understand that zkp2p.xyz sees your complete bank data - Your balance, transactions,
and personal information are visible to the attestor before redaction

2. Redaction relies on trust, not cryptography - You must trust zkp2p.xyz to not log, store,
or misuse your data

3. Be aware of analytics - Your wallet address and proof activity are tracked via PostHog
4. The extension monitors all websites - Content script is injected everywhere you browse
5. There is no self-hosting option - All proofs must go through zkp2p.xyz's single attestor

For Developers

1. Open source everything, including the extension - This is a prerequisite for trust;
closed-source extensions handling bank data are unacceptable

2. Make telemetry opt-in - Currently not even opt-out; wallet address tracking requires
explicit consent

3. Provide multiple attestor options for redundancy and self-hosting

4. Open source and verify the attestor - Run in TEE with attestation, or implement true
client-side ZK

5. Consider client-side ZK - Wrap TLSNotary in ZK proof so attestor never sees plaintext
(see oskarth's talk)

6. Document data retention policy clearly
7. Host permissions are fine - Global window.zktls API enables open on/off-ramp

ecosystem (but fix the trust issues first)

Support my work
If you want more work like this, you can support my work here.

And if you want to learn more and stay in the loop, follow me on Nostr:
npub1m2mvvpjugwdehtaskrcl7ksvdqnnhnjur9v6g9v266nss504q7mqvlr8p9, X at @jurbed,
Listen to the OptionPlus podcast and read my blog.

